Athar Al-Rafedain
Journal

Accredited Scientific Journal
It Search's in Archaeology of Iraq and Ancient Near East
Published by College of Archaeology – University of Mosul

E-Mail: uom.atharalrafedain@gmail.com

Vol.9/ No. 1 Jamada Al-Akhera 1445 A.H. /1- January. 2024 A.D.
Editorial Board

Prof. Khalid Salim Ismael
Editor in Chief
University of Mosul- College of Archaeology/ Iraq

Assist. Prof. Dr. Hassanein Haydar AbdIwahed
Managing Editor
University of Mosul- College of Archaeology/ Iraq

Members

Prof. Dr. Elizabeth Stone
Stony Brook University/ New York/ USA
Prof. Dr. Adeleid Otto
Munich University/ Institute of Archaeology/ Germany
Prof. Dr. Walther Sallaberger
Munich University/ Institute of Assyriology/ Germany
Prof. Dr. Nicolo Marchetti
Bologna University/ Department of History/ Italy
Prof. Dr. Hudeeb Hayawi Abdulkareem
University of Babylon/ Department of Archaeology/ Iraq
Prof. Dr. Jawad Matar Almosawi
University of Baghdad/ Department of Archaeology/ Iraq
Prof. Dr. Rafah Jasim Hammadi
University of Baghdad/ Department of Archaeology/ Iraq
Prof. Dr. Adel Hashim Ali
University of Basra/ Department of History/ Iraq
Assist Prof. Dr. Yasamin Abdulkareem M. Ali
University of Mosul/ Department of Archaeology/ Iraq
Assist Prof. Dr. Vyan Muafak Rasheed
University of Mosul/ Department of Archaeology/ Iraq
Assist Prof. Dr. Hani Abdulghani Abdullah
University of Mosul/ Department of Civilization/ Iraq

1- The journal accepts scientific research papers that falls in specializations of:
 - Archaeology of both branches ancient and Islamic Archaeology.
 - Ancient languages with their dialects and comparative studies.
 - Cuneiform Inscriptions and ancient inscriptions.
 - Historical and cultural studies.
 - Archaeological geology.
 - Archaeological survey techniques.
 - Anthropological studies.
 - Conservation and restoration.
2- The journal accepts research papers in both Arabic and English languages.
3- For interested researchers to publish in our journal, kindly sign up at our website (platform) through the following link:
 https://athar.mosuljournals.com
4- After signing up, the researcher will receive a confirmation email of registration and password that can be used for the access to the website of the journal through using the registration email and the password sent through the following link:
 uom.atharalrafedain@gmail.com
5- The platform (website) will give the researcher the permission to log on in order to submit his/ her research paper through a number of steps starting from filling some related information which can be displayed later after uploading the research paper.
6- The format of the paper should be designed according to the instructions of the journal as follow:
 - The research paper should be printed on (A4) paper, Microsoft Word with single spaces between lines, Simplified Arabic font for Arabic language and Times New Roman for English language.
 - The title of the research should be typed in the middle of the page, followed by the name of the researcher, his/ her academic degree, full work address, e-mail and font size is (15) for both Arabic and English.
 - The font size of the body of the research is (14) and as for the margins is (12).
 - Shapes and images are placed at the end of the research paper.
 - Margins are placed at the end of the research paper after the images and illustrations and they should be arranged in an ascending order.
- The name of the source is mentioned in full in the margin along with abbreviation of the source placed in brackets at the end of the margin.
- Tables and shapes should be numbered consecutively and according to their place in the research paper and should have titles. They should be submitted separately and charts should be in black ink and images should be in high definition quality.
- Arabic sources should be translated into English (Bibliography) and should be placed after margins at the end of the research paper.
- The dimension of the A4 paper for all directions should be (2.45) for the top and bottom of the page and (3.17) for the left and right of the page.

7- The research paper should have an abstract in Arabic and English languages, with no less than (150) words and it shouldn’t exceed (250) words.

8- The researcher (the writer of the paper) should provide the following information to the paper:
- The research paper should be sent to the journal without names.
- The researcher shall send in a separate document the following information in both Arabic and English: full name, scientific degree, certificates, work place (Department/ College/ University), a brief title to the research paper which includes the most prominent foundations, and an ORCID number to the researcher.

9- The researcher should take into consideration the following scientific conditions in writing the research paper since they are going to be the basis of accepting the paper. These conditions are:
- The researcher should identify the importance of his/ her research paper and the objectives he/ she are seeking to achieve as well as mentioning the purpose of its application.
- The research paper should have a scope of study and the community that the researcher wishes to study in his/ her paper.
- The researcher should take into consideration the selection of the appropriate methodology that is in harmony with the topic of the paper. In addition, the researcher should consider the tools of data collection which are in harmony with the research paper and the adopted methodology.
- The researcher should consider the selection of the relevant and updated sources of information that the researcher depends as well as the accuracy in quotations and reference to the related sources.
- The researcher should consider writing the results that he/she reach and making sure of their validity and relation to the research questions or the hypothesis that was placed at the body of the paper.
- The research paper has not been previously published or submitted for the purpose of obtaining a scientific degree or extracted from the intellectual property of another researcher, and the researcher must pledge in writing during the submission process.
- The number of pages of the paper should not exceed (25) pages and in case of exceeding this number, the researcher shall pay an additional amount of (3000 Iraqi Dinars IQD) for each additional page.
- The submitted copies of the research paper are not going to be returned to the researcher whether it is accepted for publishing or not.
- The researcher should edit any of linguistic or typing mistakes.
- The researcher should submit a hard (printed) copy along with a soft copy on (CD) after editing it and notifying him of the acceptance to publish.

10. The journal is functioning according to self-funding. Therefore, the researcher bears the publication and plagiarism fees of (115,000 IQD) one hundred and fifteen thousand Iraqi dinars only.

11. Each researcher is provided with a copy of his/her research. As for the full copy of the journal, it is requested from the journal’s secretariat in return for a fee set by the editorial board.

Note:

All ideas and opinions that are mentioned in the research papers which are published at our journal express the opinions of the researchers and their intellectual orientations directly. They do not necessarily reflect the opinions of the editorial board. Hence, it is worthy to note
<table>
<thead>
<tr>
<th>Page</th>
<th>Research Name</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Khalid Salim Ismael</td>
<td>Preface</td>
</tr>
<tr>
<td>3-28</td>
<td>Nael Hanoon</td>
<td>The Sites and Canal (Falage) of the Lower Khabur Region in Syria</td>
</tr>
<tr>
<td>29-56</td>
<td>Israa Ihsan Ali Safwan Sami Saeed</td>
<td>The Importance of Money in Supporting the Authority of the Assyrian Kings - Study in the Light of Cuneiform Sources</td>
</tr>
<tr>
<td>57-70</td>
<td>Yassin Ramadan Hassan Ahmed Zidan Al-Hadidi</td>
<td>Gifts Exchanged Between the Egyptians and the Babylonians in the Light of the Amarna Letters</td>
</tr>
<tr>
<td>71-102</td>
<td>Karwan S. Bekr Noman J. Ibrahim Aziz M.A. Al-Zibary</td>
<td>The Architecture of the Temples with the Tripartite Style in Mesopotamia from the Sixth Millennium until the end of the Second Millennium BC.</td>
</tr>
<tr>
<td>103-134</td>
<td>Muhammed Muhaarib Ali Ameen Abd-Anafi Ameen</td>
<td>The Nominal Sentence in the Akkadian Language- A Grammatical Study</td>
</tr>
<tr>
<td>135-160</td>
<td>Husham Sawadi Hashim</td>
<td>Agriculture in Bilad Al sham (Levant) in the seventeenth century through the Book of Gahan-nama by Kateb Chalabi</td>
</tr>
<tr>
<td>161-196</td>
<td>Adnan Ahmad Abudayyyah Dalia Ilyas Zalloum</td>
<td>The Functions of the Shekel in Ancient Civilizations</td>
</tr>
<tr>
<td>197-226</td>
<td>Saad Ahmed Abed Yasmine Abdel Karim</td>
<td>Restoration and Conservation of an Antique Wood Shutter Door from the Safawi Period</td>
</tr>
<tr>
<td>227-256</td>
<td>Fatin Mouafaq Fadhel AL-Shaker</td>
<td>The Religious Effect on Development the Knowledge of Medicine & Drugs of the Ancient Egyptian</td>
</tr>
<tr>
<td>257-280</td>
<td>Omar Jassam Fathel</td>
<td>Archaeological Terms: A Study in Semantics and Usage</td>
</tr>
<tr>
<td>281-294</td>
<td>Rana Waleed Fathi</td>
<td>Budget Calculation in the Light of an Unpunished Cuneiform Text from the Akkadian Period</td>
</tr>
<tr>
<td>295-312</td>
<td>Rana waadallah Mahde</td>
<td>Architectural Characteristics of Vaults and their Uses in Building in the City of Mosul – Selected Models</td>
</tr>
<tr>
<td>313-340</td>
<td>Rakan Faraj Al-Khayyat</td>
<td>Legends and Tales about the Assyrian Irrigation at Nineveh Suburbs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>English Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-25</td>
</tr>
</tbody>
</table>

1st – January – 2024
Preface

We are pleased to announce the first part of the Ninth Volume of Athar Al-Rafedain Journal where this Volume coincides with the journal’s success in obtaining the Standards for Accreditation of the Arab Reference Impact Factor and Citations “ARCIF” for the year 2023, which are compatible with international standards, according to the email sent to the editor-in-chief of the journal on 8/10/2023. This step is considered as another important achievement added to the series of achievements that we have striven to achieve. This Volume included a valuable collection of articles and studies in the disciplines of Archaeology and Ancient Languages as well as studies in Ancient History and Civilization by a group of researchers who submitted their articles to the Athar Al-Rafedain Journal which is issued by the College of Archaeology at the University of Mosul.

We wish you all the best

Prof. Khalid Salim Ismael
Editor-in-Chief
1- January- 2024
Macrobotanical Remains in Archaeology: Preservation Modes and Method

Saya Halko Fattah Agha (*) Ramon Buxó Capdevila (**) Ari Khaleel Kamil (***)

Received Date: 11/7/2023 Reviewed Date: 25/9/2023
Accepted Date: 1/10/2023 Available Online: 1/1/2024

Abstract:
During excavation, archaeologists sometimes notice the presence of plant remains in the archaeological sediment. These more visible macrobotanical remains include wood, seeds, fruits and floral parts. Depending on the region and conditions, they can be preserved by various modes, including dessication, waterlogging and charring; the latter being the most common especially in modern Iraq.

Thanks to the development of research on this organic material, our knowledge on the way of life of ancient societies was greatly improved. They would be able to provide important knowledge about earlier vegetation, the plant exploitation including cultivation and domestication process as well as the diet. In addition, plant remains may help us to reconstruct activities and help us to interpret the function of spaces and/or structures. However, before being able to provide such information, the archaeobotanical study requires to apply strategies and methods from sampling to interpretation. Our paper presents these different steps.

Keywords: Archaeobotany, Flotation, Charred Plants, Mineralisation, Dry Sieving

(*) MA. Student/ University of Salaheddin/ College of Arts/ Department of Archaeology
E-Mail: saya.agha@su.edu.krd

(**) Prof. Catalunya Archaeology Museum / Girona / Catalunya.
E-Mail: rbuxo@gencat.cat
ORCID: 0000-0003-1428-3673

(***) Asst. Prof. Dr. University of Salaheddin / Collage of Arts/ Department of Archaeology
E-mail: ari.kamil@su.edu.krd
ORCID: 0009-0003-3599-9117
بقايا النباتات الكبيرة في علم الآثار: أنماط وطرق الحفظ

رامون بوكسو كابيديفيلا (**)
 سابا هلكو فتاح آغا (*)
 ناري خليل كامل (***)

تاريخ المراجعة: 2023/9/25
تاريخ التقديم: 2023/7/11
تاريخ النشر الإلكتروني: 2024/1/1
تاريخ القبول: 2023/10/1

الملخص:

خلال التنقيبات، يلاحظ علماء الآثار أحيانا وجود بقايا نباتية بين الرواسب الأثرية. تشمل هذه البقايا النباتات الكبيرة التي ترى بالعين السجردة كالخشب والبذور والفواكه وأجزاء من الزهور. وكل هذا يعتمد على الظروف المناخية للمنطقة، عند اكتشافها حيث يمكن الحفاظ عليها باستعمال طرق مختلفة، بما في ذلك التجفيف والتشبع بالمياه فضلا عن التفحم؛ والطريقة الأخيرة هي الأكثر شيوعًا في العراق.

حيث ظهرت دراسات حديثة بفضل التطور العلمي في البحث عن المواد العضوية، ومن خلالها تحسنت معرفتنا عن ماهية وطرق الحياة لدى المجتمعات القديمة بشكل كبير. إذ يمكنها تقديم معلومات مهمة حول مدى الغطاء النباتي في العصور القديمة، ومدى تطور المفاهيم الزراعية وعمليات التدجين فضلا عن النظام الغذائي. فضلا على ذلك، قد تساعتنا بقايا النباتات في إعادة بناء الأنشطة والحصول على تفسير لوظائف المساحات والهيئات. للحصول على المزيد من المعلومات، تتطلب الدراسة الأثرية تطبيق استراتيجيات وطرق مختلفة من خلال أخذ العينات المختلفة وتقديم التفسير المختلفة لها، وهدفنا في هذا البحث هو معرفة الطرق المختلفة في الكشف عن النباتات الكبيرة المكتشفة خلال التنقيبات الأثرية ودراستها بصورة علمية دقيقة.

الكلمات المفتاحية: علم النبات الأثري، التعويم، النباتات المتلحمة، التمعدن، الغريلة الجافة.

(*) كلية الآداب/قسم الآثار/جامعة صلاح الدين
(**) المتحف كاتالونيا للأثار/جيرونا/كاتالونيا.
(***) كلية الآداب/قسم الآثار/جامعة صلاح الدين
Introduction

During archaeological fieldwork, archaeologists sometime notice changes in the colour or texture of the sediment. Dark burnt and white soft ashy layers are among the most easily recognisable deposits. They can be associated to a structure such as a hearth, oven or kiln and be spread within the site, in internal or external spaces. These specific layers have a high probability to contain plant remains, preserved by charring. Whereas other preservation modes exists in the world depending on the region and conditions of deposit (dessication, waterlogging), in Iraq plant remains are mostly recovered in the charred form. Additional modes of preservation in the region includes (bio) mineralisation and plant impressions.

Plant macroremains refers to items that are, in theory, large enough to be visible by eyes. However, since the earliest archaeological research carried out in Iraq, little attention was carried out on The retrieval of plant remains. The field of study, the archaeobotany, The study of plant remains is a relatively new field that originated towards the end of XIXth century and was developed by european researchers in western Europe, but also in Anatolia, Egypt and Peru. Plant remains include wood, seeds, fruits, tubers and other floral parts. Their analysis and identification may help archaeologists to understand and reconstruct activities carried out by the inhabitants of the site. Indeed, this organic material can provide information on 1) the vegetation that was surrounding the occupation, 2) the seasonality of the settlement (camp versus permanent village), 3) strategies of plant exploitation, and it especially highlights if people were gathering or cultivating plants and how and 4) the uses of the plants, as food, fuel, architecture, craft etc.
Information obtained through archaeobotanical analysis can (and should) be confronted to other material and fields of study to answer specific questions. As an example, if the plant remains can provide information about the crops consumed by an ancient community, the type of pottery associated to it may allow us to further investigate storage and/or cooking practices. Similarly, the study of lithic industry may provide additional information about plant harvesting strategies. Interdisciplinary allow archaeologists to cross and check data obtained from various disciplines. The archaeobotanical results can thus, be discussed and compared to other available data to reconstruct the history of an archaeological site. This paper, deriving from the master thesis of S.H. Agha carried under the direction of prof. A.KH. Kamil and R. Buxo Capdevila, The objective of this paper is to provide an overview of the fundamental principles of archaeobotany and to present the methodologies employed in the retrieval and identification of macrobotanical remains.

1. The macrobotanical remains

Plants can be divided into different groups or categories, depending on the scientific perspective (anatomy, botany etc). We can, for example, distinguish the vascular from the non-vascular plants; the first one being subdivised into the gymnosperms and the angiosperms. But plants can also be classified into trees, shrubs and herbs according to the degree of lignification.

Plant macro remains are fossilized plants that are visible at a distance and that can be handled by hand. A macrofossil may range in size from 0.5 mm to an enormous trunk of a tree, there is a median size of 0.5 mm to 2.0 m. ¹
There are many types of plant macro remains, including fruits, seeds, wood, tubers, fibers, leaf fragments, etc. Identifying fragmented fruit, nut, and large seed remains is therefore largely a matter of detailed study of comparative material. To recognize the charred Macroremains, it is necessary to char and fragment reference materials in a manner that closely matches the size and composition of the archaeological specimens.

a. Wood (and wood-like)

The term of « wood » usually refers to lignified plants. However, some plants such as the date palm are often considered as trees whereas, botanically speaking, they are not.

Wood remains provide information about the vegetation surrounding a site at the time of its occupation, its exploitation and evolution including degradation related to human activities.

The identification of charred wood is one of the primary tasks undertaken by paleoethnobotanists. Through the charring process, certain characteristics that are typically helpful in identifying fresh wood, such as color and odor, are eliminated. Wood can be used as construction material to build houses but also ships, as fuel and to produce objects (such as hunting or agricultural tools, vessels, etc). However, the recovery of wood can also reflect wood management associated to cultivation activities.

b. Seeds, fruits, underground storage organs and floral parts

Seeds are reproductive structures. The seeds of the gymnosperms are naked whereas those of the angiosperms are enclosed and protected by an ovary. In angiosperm seeds, there are three major components: the
embryo, the endosperm, and the seed coat (testa). Archaeological seeds may not preserve all distinguishing characteristics. Charring, for example, can alter the size and shape of the seeds, or the seeds may be broken. Seed coats provide important diagnostic characteristics, such as color for uncharred seeds, texture, attachments, and scars. The ability to recognize and distinguish seeds significantly declines when the protective outer layer of the seed, known as the seed coat, is either lost through charring or eroded in dried-out materials. Typically, when large seeds are found, they often present a fragmented challenge. To successfully identify charred specimens, it becomes crucial to deliberately char and fragment comparable materials that resemble the archaeological samples. Additionally, a thorough examination of distinct tissue features is required. The accurate identification of archaeological seeds to botanical taxa is largely based on comparing archaeological specimens to known varieties of seeds.

Furthermore, the Fruit is a matured ovary and its attaching parts. Depending on fruit structure, the ovary wall, or pericarp, can be soft, fleshy, leathery, rigid, or thin. Fruits derive from the development of the ovary and can consequently only be produced by angiosperms. Seed arrangement in fruit can also vary. Certain fruits exhibit the characteristic of a solitary seed that is united with the wall of the ovary. Other fruits contain multiple seeds. While archaeologists occasionally discover intact whole fruits, it is more typical to find fragments of edible portions of the fruit. Additionally, Nuts are hard and bony fruits that are indehiscent, one-celled, and one-seeded. There are some nuts that are covered by a leathery husk, such as those in the hickory family. There may be archaeological evidence of husk fragments, hard pericarps, and
embryos of nuts. Identifying many roots and tubers based on their form and structure can be challenging due to the variable nature of these characteristics. However, the degree of preservation and fragmentation of macro remains can further limit the success of identification. When preservation is through charring, recovering tuber or root peelings is very unlikely, because such remains are quite fragile. However, it is possible to find finds both in dry and waterlogged preservation settings. It was also attempted to detect tuber exploitation via tool useware and residue analysis.

1.1 The preservation modes and states in Iraq

In normal conditions, organic material would desintegrate through time. Specific favorable conditions must be met for plant remains to be preserved in archaeological deposits. Natural and cultural processes have a significant impact on the preservation state of archaeobotanical material. Each preservation mode alters differently the plant remains and the preservation potential of plants varies from species to species.

1.1.1 Charring

From an archaeological standpoint, charring is perhaps the most beneficial outcome for a seed, even though it may appear counterintuitive. Charring renders a seed highly resistant to decomposition as charred plants become inedible to insects, animals, bacteria, and fungi. Charred plant remains survive in most environments, and charring (carbonisation) is the most frequent mode of preservation encountered on archaeological sites in Iraq. In most cases, open fires such as in hearths, parching ovens or house fires, exposed plant remains to high temperatures leading to their carbonisation.
can be accidental or voluntary.25 The organic molecules in the plant are transformed into charcoal by this heating (when there is a restricted supply of oxygen).26 Carbonised plant remains can persist in most conditions because charcoal is unaffected by bacteria, fungus, or other organisms that break down organic matter. Consequently, plant materials that are utilized as fuel, discarded into fires, or handled in close proximity to open flames have a higher probability of undergoing charring.27

Charring can alter the morphology and the morphometry of the plant part. It can led to a shrinkage (size decrease) or conversely contribute to create puffy macrobotanical remains. The identification of plant specimens significantly decreases when they are fragmented or when the seed coat is damaged or poorly preserved. Furthermore, different plant parts and taxa exhibit distinct responses to charring. The hard nutshell fragments (for example pistachio fruit endocarp) are usually better survive charring than fragile seeds like oily seeds of flax or poppy (that tend to explode when exposed to fire).28

1.1.2 (Bio-)mineralisation

In classical archaeological contexts, mineralization is a frequently encountered preservation method, with calcium-phosphate replacement being the predominant form observed.29 This kind of preservation is accomplished by adding minerals to the cell walls or by filling the cell voids with inorganic materials. Mineralization using calcium carbonate (CaCO\textsubscript{3}), silica, or phosphate is the most frequent.30 The prevalence of these conditions is most notable in latrine deposits, where the majority of the assemblages consist of plant remains that were consumed and subsequently excreted by humans. These deposits offer exceptional evidence of diet. However, the distribution of such assemblages in the
classical world is highly localized due to the specific microenvironment necessary for calcium-phosphate preservation. Mineralization occurs when inorganic substances take the place of the organic content in plant remains. Several plants' seed coats and fruit shells naturally undergo mineralization. These mineralized plant parts occasionally endure in archaeological deposits without requiring additional external preservation methods.

1.2 Recovering techniques

1.2.1 Sampling strategies

In Archaeobotany, usually archaeologists use different methods for sampling according to regions, sites, period and specialists. Given that charring can arise from both intentional and unintentional burning, it may seem reasonable to adopt a sampling approach that focuses exclusively on contexts displaying evidence of burning. Nevertheless, solely sampling hearths or visibly ashy deposits does not consistently lead to the retrieval of a macroremains sample that accurately represents the broader context in practice. It is possible to clean hearths periodically, limiting their usefulness. Once charred material has been dispersed or relocated from its original primary deposition context to secondary contexts, it becomes challenging to visually identify and extract samples from it. In most excavation situations, it is not feasible to recover plant macroremains of all sizes from every cubic meter of excavated soil. Even if all soil is sieved through a water separator system, selecting a mesh size that allows for efficient processing can still lead to the unintentional loss of small remains. For all size grades of macroremains, bulk sieving is impractical; instead, samples of the excavated soil should be Gathered for the purpose of flotation or meticulous sieving.
reduction in the number of samples collected for analysis, leading to an expedited processing time. This is achieved by processing smaller volumes of sediment during the sampling procedure, rather than processing entire contexts.39, 40

Moreover the sampling strategy should be in agreement with the project research and the nature of preservation. When there are several temporal components at a site, in order to optimize temporal contrasts, it is feasible to select a smaller subset of sediment samples for analysis.41

Comparing Collections of artifacts and remains from all hearth features or samples taken from the floors over a period of time is possible. For single-component sites, it is possible to select samples that offer the greatest insights into the varying utilization of space. In essence, it is easier to choose a smaller subset of samples (potentially analyzing 25\% or less of the total samples) for analysis rather than attempting to predict the optimal sampling contexts during the ongoing excavation process.42 Archaeobotanical samples are typically collected using three techniques: "pinch" or composite sampling, column sampling, and point sampling.43

When excavating horizontally intricate regions that demand context-specific botanical information, it is advisable to take samples at shorter intervals and from more precisely defined areas. It is crucial for the sampling process to promptly adapt to changes in excavation strategy or conditions. Moreover, I suggest avoiding composite sampling over areas exceeding one meter in size; if the units are larger, they should be subdivided accordingly. Each sediment sample should be placed in a new plastic bag, promptly sealed, and labeled with relevant provenience details such as the grid number.44 Between samples, Ensure that the
sampling tool (such as a trowel or a similar instrument) is properly cleaned.

During sampling, it is important for each sampling unit to maintain a consistent depth when cutting into the floor, avoiding any intrusion into lower strata. When excavating substantial pit features, dissecting them into sections enables the study of profiles, which helps guide sampling efforts and enhances the chances of obtaining botanical samples that accurately reflect the original purpose or function.45

In conclusion, here are some pointers for effective archaeobotanical sampling:

1. Collect sediment samples of standardized sizes for the purpose of flotation or fine-sieving.46

2. Handle the sediment collected for flotation or fine sieving with care. Ensure that the samples are taken from sediment that has already passed through bulk screens, while being cautious not to force the sediment through the screen.

3. Use sediment bags with two tags. In cases of moist sediment, paper tags placed inside flotation sample bags degrade rapidly. Writing information on the outside of plastic bags with an ink marker fades quickly when exposed to sunlight.

4. Evaluate the condition of the sediments. If the flotation samples are wet, leave the plastic bags open to allow the sediments to dry during processing. In instances of large wet samples, it may be necessary to spread them out or subject them to water sieving.

5. Float or fine sieve the sediment samples, aiming to keep pace with the fieldwork. While the recovery of macroremains often lags behind
excavation, it is advisable to commence sediment processing early in the field season.47

1.2.2 Processing

Small seeds, on the other hand, are frequently difficult to detect with the naked eye, especially if they are waterlogged in dark organic sediment.48

Archaeological sites provide three methods for recovering macro remains: direct retrieval from the site itself during excavation, utilization of excavation screens, and application of water-based recovery techniques such as flotation or fine-sieving.49 Considering the significant variation in preservation conditions both within and between sites, it is crucial to formulate a comprehensive recovery plan that aligns with long-term excavation objectives. Sampling strategies must account for factors such as the quantity and distribution of samples, sample volume, and appropriate recovery techniques. These decisions depend on various factors, including the specific characteristics of the archaeological site, the sediment type, the expected preservation methods, the research inquiries at hand, and the available resources.50

Generally Dry-sieving (dry screening), manual and machine-assisted flotation are commonly employed in Iraq for plant material recovery.

a. Dry Sieving

Dry Sieving (Screening) is one method for dealing with this problem. Dry screening is now a common method in commercial and academic excavations, allowing for the systematic recovery of tiny objects such as lithics, pottery sherds, bone, and shell.51 However, because the majority of seeds and other plant pieces are so tiny (2 mm), if the screen aperture size is too high, botanical material may be lost. Plant
remains may be crushed or have their distinctive traits removed when handled with stones and other thick materials. Dry screening is sometimes the most practical way to retrieve macro remnants, though. During extremely dry conditions, bacterial activity is reduced, resulting in dried/desiccated plant remains (e.g., in a desert environment).

Using water in other ways to extract macrobotanical remains weakens them. In spite of the fact that the plant material appears very well preserved, wetness greatly accelerates tissue breakdown and decomposition. Water can even explode carbonized plant remains from arid areas. (figure 1).

b. Manual Flotation

The foundation for flotation equipment is grounded on the principle that combusted botanical elements possess a lower density (1 g/mL) than that of water. When sediment is shaken in water, charred plants rise to surface for collection with a skimmer or mesh container. In order to capture the minute components of plant remains, commonly referred to as the light fraction, a mesh of 0.5 mm or smaller is conventionally utilized. The archaeological practice of retrieving artifacts involves segregating stone tools, ceramics, bone, and other materials with higher density than water, resulting in their individual retrieval. Bucke flotation is a basic and easy-to-build system. To facilitate the collection of heavy materials, a mesh screen is affixed to the bottom of a bucket after cutting it off. The sediment-filled bucket is then emptied into a tub filled with water. Using a fine mesh hand-sieve, the lighter fraction is sieved from the water's surface. (figure 2).
c. Flotation Assist by Machine

Machine-aided systems, in contrast to manual techniques which depend on hand-agitation or bilge pumps, commonly utilize a type of hydrodynamic force generated by a gasoline-powered pump.

The Ankara Machine (figure 3), commonly referred to as the water separator, is regarded as one of the earliest systems to have been conceptualized and created. The methodology employed involved the utilization of water pressure derived from an elevated reservoir to effectively cleanse non-floating artifacts, disintegrate sediment, and rinse charred plant remains into a distinct flot box that was deliberately coated with fine mesh.

The SMAP device has the capability to send water directly to the primary container without requiring a raised holding structure. Additionally, it has the added benefit of being easily transportable. Various SMAP tanks in use for processing clay sediments. Settling tanks collect and remove sediment from the flotation tank's outflow, recycling clean water. Useful in limited water and conservation situations.

"Water pressure alone does not constitute the sole means of agitation for samples. " Froth flotation apparatuses employ air pressure, generated by compressed air and/or a frothing agent, to induce the formation of bubbles for the purpose of dispersing and segregating sediment into distinct light and heavy factions (figure 4).

1.2.3 Analysis

a. Sorting (large and small mesh)

During excavation, a field laboratory is required for both sample storage and post-processing tasks. The field lab should ideally feature capabilities for first analysis of light fraction samples, as well as space for sorting items collected in heavy fraction residue.
The field lab accommodates a variety of additional activities, and excavators and trench supervisors frequently work there in the evenings.65

Basic Sorting Procedures and Equipment: Counts, weights, and frequently measures or other characteristics of items according to taxonomic grouping are recorded while analyzing plant remnants recovered by flotation or a related, fine-mesh recovery technique.66

Selection of Samples: All samples known to be from secure stratigraphy can be studied where relatively few seeds have been recovered. However, bulk flotation of richer sites, such as those in the Near East, can yield hundreds of samples ranging from a few seeds to thousands of seeds.67

Sorting Methods: When a sample has both light and heavy fractions, they are typically studied individually, however the numerical data can be merged when reported. Each sample (or light and heavy fraction) is weighed to the closest 0.01 g before being passed through a series of nested geological sieves, resulting in "splits" of similar-sized particles.68

Individuals sorting through samples should be able to recognize and collect artifacts such as lithics, pottery sherds, and animal bone because heavy fraction residues may include them. (Figure 5-6), 69

b. Identification:

Diagnostic characteristics, such as color (for uncharred specimens), texture, attachments and scars morphologies allow to identify plants parts. While photographs and drawings can serve as useful visual aids, they cannot replace or substitute the original material itself. Comparative material (herbarium, seed bank) is required in order to check the identification of the plant remains. Observing comparative specimens enable the archaeobotanists to gain an understanding of the diagnostic characteristics and how it can be distinguished from other similar
specimens. Sometimes, experimental charring allows to create reference collection of specimens preserved in similar conditions. This comparative material helps to understand the effects or damage induced by the specific conditions. It is essential to conduct complete sample analysis and identification in a laboratory that has access to a physical reference collection. However, for individuals who require on-site work, there are now printed and digital seed atlases available to assist in the process. The identification of plants necessitates a considerable duration of experiential learning and thorough acquaintance with the subject matter. Considering the uncertainties associated with the preservation of archaeobotanical specimens, and the intricate and laborious process of distinguishing and categorizing them, it is imperative to design a comprehensive sampling methodology at the outset of a research initiative.

Conclusion

In summary, this paper highlights several key points regarding archaeobotany and its significance in understanding ancient societies:

1. **Multifaceted Information Source**: Archaeobotany offers a wealth of information to delve into and reconstruct the daily lives of ancient civilizations.

2. **Interdisciplinary Insights**: The interpretations drawn from archaeobotanical data are intricately linked to broader archaeological inquiries encompassing ecological, social, economic, and political aspects.

3. **Historical Neglect**: Historically, archaeobotany did not receive the attention it merits, which explains the limited investigations in the field.
4. Recovery Methods: The paper explores various methods for recovering plant remains in diverse states, underscoring the importance of standardization while recognizing the need for flexibility to adapt techniques to the unique characteristics of each site.

5. Evolution of Techniques: Weakness recognition within the field has spurred the development of innovative recovery techniques in paleoethnobotany.

6. Diverse Plant Uses: Examining the complete spectrum of plant materials brought to ancient sites for purposes such as sustenance, fuel, construction, and toolmaking yields invaluable insights into ancient societies.

These points collectively emphasize the significance of archaeobotany as a multidimensional tool for exploring and comprehending the complexities of past civilizations.
Figures

(Figure 1) Dry sieving process
(https://zagoraarchaeologicalproject.org/2013/10/04/archaeological-sieving/)

(Figure 2) Manual flotation machine
(http://clarissacagnato.weebly.com/macrobotanical-analysis.html)
Figure 4: Flotation System (Ankara Machine)

Figure 4: Flotation assist by machine

(The photo by researcher)
(figure 5) sorting heavy residues process

(The photo by researcher)

(figure 6) sorting light residues process

References:

7 Pearsall, Paleoethnobotany, p156–165.
9 Zohary, Hopf, and Weiss, Domestication of Plants in the Old World, p74–84.
12 Pearsall, Paleoethnobotany, p151.
13 Marston, Guedes, and Warinner, Method and Theory in Paleoethnobotany, p133–37.
15 Pearsall, Paleoethnobotany, p151.
16 Ibid.
17 Ibid., p165.
19 Pearsall, Paleoethnobotany, p165.
21 Bruno David and Julian Thomas, Handbook of Landscape Archaeology (Routledge, 2016), p444–460.
22 Zohary, Hopf, and Weiss, Domestication of Plants in the Old World, p12.

Ibid.

Zohary, Hopf, and Weiss, Domestication of Plants in the Old World, p12.

Ibid.

Avci, Plant Remains in Archaeology, p10.

Pearsall, Paleoethnobotany, p95.

Ibid.

Pearsall, Case Studies in Paleoethnobotany, p41–43.

Ibid.

Pearsall, Paleoethnobotany,p 95.

Pearsall, Paleoethnobotany,p 95.

Ibid.

Ibid.

Pearsall, Paleoethnobotany, p95.

Pearsall, Case Studies in Paleoethnobotany, p 47.

Pearsall, Paleoethnobotany, p95.

Marston, Guedes, and Warinner, Method and Theory in Paleoethnobotany,p 96.

54 Marston, Guedes, and Warinner, Method and Theory in Paleoethnobotany, p 96.
55 Pearsall, Paleoethnobotany, p 17–19.
56 Ibid., 35–45.
57 Marston, Guedes, and Warinner, Method and Theory in Paleoethnobotany, p 101.
58 Pearsall, Paleoethnobotany, p 35–45.
60 Pearsall, Case Studies in Paleoethnobotany, 52–54.
61 SMAP: Shell Mound Archaeological Project
63 Pearsall, Paleoethnobotany, p 107–125.
64 Marston, Guedes, and Warinner, Method and Theory in Paleoethnobotany, p 102–105.
66 Marston, Guedes, and Warinner, Method and Theory in Paleoethnobotany, p 118–119.
67 Ibid.
68 Ibid.
69 Pearsall, Paleoethnobotany, p 80–82.
71 Pearsall, Case Studies in Paleoethnobotany, p 59.
سعادة أ.د. رئيس تحرير مجلة أثار الرفقاء المحترم
جامعة الموصل، كلية الآثار، الموصول، العراق
تحية طيبة وبعد...

يسرنا التأثير والاستثناءات المرجعية للمجلة العلمية العربية (رسيف - AR CIF)، أحد مدارس قاعدة بيانات معرفية للاتصال والمحتوى العلمي، إعلانكم بأن قد أطلق التقييم السنوي ثاني للمجلة للعام 2023.

يقضي تأثير "رسيف - AR CIF" لإشراف "مجلس الإدارة والتنسيق" الذي يتكون من ممثلين لعدد جهات عربية ودولية: (مكتبة البونيسكو الإقليمية للترجمة في الدول العربية، لجنة الأمم المتحدة للغة العربية (إلكب)، مكتبة الأثناوية، قاعدة بيانات معرفية). بالإضافة إلى جهات علمية من خبراء وأكاديميين ذوي سمعة علمية زائدة من عدة دول عربية وبريطانية.

ومن الجدير بالذكر بأن "رسيف - AR CIF" قام بالعمل على محاسبة ودراسة بيانات ما يقارب (5000) عنوان مجلة عربية علمية أو بحثية في مختبر التخصصات، وقد نجاها (1400) عنوان علمي أو بحثي في العالم العربي، ونجح منها (1155) مجلة علمية فقط تلقت من الحكومة العالمية لدفعت "رسيف - AR CIF" في تقرير عام 2023.

وبالتالي، نحن نهنئكم وإعلانكم بأن مجلة أثار الرفقاء السارة من جامعة الموصل، كلية الآثار، الموصول، العراق، قد نجحت في تحقيق معايير "رسيف - AR CIF" المتوقعة مع المعايير العالمية، وهي تبلغ حدة (32) معيارًا، والالتزام في هذه المعايير يمكننا الدخول إلى الراطب التالي:

http://e-marefa.net/ar/cif/criteria

وكان معايير "رسيف - AR CIF" لعام لجامعة لسنة 2023.857 (0.08)

كما شملت القائمة في اختصار التاريخ والآثر من إجمالي عدد المجلات (46) على المستوى العربي ضمن المجلة (0.72).

وكانت نسبة معدل "رسيف - AR CIF" لهذا التخصص كان 72%.

راهن العالم أن حصول أي مجلة ما على مرتبة ضمن الأعلى (10) مجالات في تقرير "رسيف - AR CIF" لعام 2023 في أي تخصص، لا يعني الحصول بالمجلة بشكل دائم على تصنيف مرتبة ك categoria G1 أو G2، حيث يتوافق ذلك بين جملة قيمة الفائدة التي حصلت عليها من المعايير الخاصة المعتمدة للتصنيف والمجلات المدرجة. "رسيف - AR CIF" (عام 2023) إلى ذات في مختلف التخصصات، ومن الملاحظات على هذه المعايير الخصمة من خلال http://e-marefa.net/ar/cif

وبما أن الإعلان عن هذه النتيجة ساء على مفهوم الإكستروفي، أو على مواقع التواصل الاجتماعي، وكذلك الإشارة في النسخة الورقية للمجلة إلى "رسيف - AR CIF" الخاص بالمجلة.

頌意，موج من خلال كلمات مستندة على شهداء رسمية إلكترونية خاصة بجامعة في مهاجر "رسيف - AR CIF"، التوصل معا متكال。

وتنضموا بقبول فائق الاحترام والتقدير.

أ.د. سامي الخزندر
رئيس متابعة معايير "رسيف - AR CIF"
بسم الله الرحمن الرحيم

توطئة

أ. خالد سالم إسماعيل
رئيس التحرير

يسعدنا أن نقدم الجزء الأول من المجلة التاسع من مجلة آثار الرافدين الذي يتزامن مع نجاح المجلة بالحصول على معايير اعتماد عامل التأثير والاستشهادات المرجعية العربية "أرسيف ARCIF" لعام 2023 المتوفقة مع المعايير العالمية بحسب الإيميل المرسل إلى رئيس تحرير المجلة بتاريخ 8/10/2023 وهو إنجاز هام آخر يضاف إلى سلسلة الإنجازات التي سعينا تحقيقها؛ إذ تضمن هذا الجزء مجموعة قيمة من البحوث والدراسات في تخصصات علم الآثار واللغات القديمة فضلاً عن دراسات في التاريخ القديم والحضارة لنخبة من الباحثين الذين تقدموا ببحوثهم لمجلة آثار الرافدين التي تصدرها كلية الآثار بجامعة الموصل.

وallah ولي التوفيق

الأول من كانون الثاني سنة 2024
<table>
<thead>
<tr>
<th>العناوين</th>
<th>اسم الباحث</th>
<th>الصفحة</th>
</tr>
</thead>
<tbody>
<tr>
<td>توطئة</td>
<td>خالد سالم إسماعيل</td>
<td>1</td>
</tr>
<tr>
<td>الموقع والخابور الأسفل و-Febه في سورية</td>
<td>نائل حنون</td>
<td>28-3</td>
</tr>
<tr>
<td>أهمية المقال في دعم سلطة الملوك الأشوريين -دراسة في ضوء المصادر المسمارية</td>
<td>أسراء أنسان علي</td>
<td>29-39</td>
</tr>
<tr>
<td>البداية المتبادلة بين المصريين والبابليين في ضوء رسائل العمانية</td>
<td>صفوان سامي سعيد</td>
<td>50-62</td>
</tr>
<tr>
<td>بأسين رمضان حسن</td>
<td>63-74</td>
<td></td>
</tr>
<tr>
<td>أحمد زيدان الحديدي</td>
<td>75-77</td>
<td></td>
</tr>
<tr>
<td>عمارة المعابد ذات الطراز التخطيطي الثلاثي التقسيم في بلاد الرافدين من الألف السادس حتى نهاية الألف الثاني ق.م.</td>
<td>كاروان صديق بكر</td>
<td>78-90</td>
</tr>
<tr>
<td>نعيم محمد ابراهيم</td>
<td>91-102</td>
<td></td>
</tr>
<tr>
<td>عمرز محمد إيمين زباري</td>
<td>103-114</td>
<td></td>
</tr>
<tr>
<td>الجملة الأدبية في اللغة الأكادية - دراسة نحوية</td>
<td>محمد محارب علي</td>
<td>115-134</td>
</tr>
<tr>
<td>أمين عبد النافع أمين</td>
<td>135-140</td>
<td></td>
</tr>
<tr>
<td>الزراعة في بلاد الشام في القرن السابع عشر من خلال كتب جهان نما لكاتب جبلي</td>
<td>هشام سوداني هاشم</td>
<td>141-150</td>
</tr>
<tr>
<td></td>
<td>151-160</td>
<td></td>
</tr>
<tr>
<td>الشيقل في الحضارات القديمة</td>
<td>عبود أحمد أبو دية</td>
<td>161-171</td>
</tr>
<tr>
<td></td>
<td>داليا إلياس زلوم</td>
<td>172-192</td>
</tr>
<tr>
<td>ترميز وصبانة مصراق باب خشب أثري من العصر الصفوي</td>
<td>سعد أحمد عبد مصطفى</td>
<td>193-214</td>
</tr>
<tr>
<td>ياسمين عبد الكريم مهدي علي</td>
<td>215-232</td>
<td></td>
</tr>
<tr>
<td>الآثار الدينية في تطوير ممارسات المصريين القدماء في مجالات الطب والتعليقات</td>
<td>فاطمة فاضل الشاكر</td>
<td>233-249</td>
</tr>
<tr>
<td>مصطلحات آثارية دراسة في الدلاة والاستعمال</td>
<td>عمر جاسم فاضل</td>
<td>250-267</td>
</tr>
<tr>
<td>حساب الميزانية في ضوء نص مسماري غير منشور من العصر الإبكي</td>
<td>رنا وليد فتحي</td>
<td>268-281</td>
</tr>
<tr>
<td>السمات العمالية للأقوى واستخداماتها في مبانى مدينة الموصل - نماذج منتخبة</td>
<td>رنا وعدالة مهدي</td>
<td>282-293</td>
</tr>
<tr>
<td>أساطير وحكايات عن الري الإشوري في ضواحي نينوى</td>
<td>راكان فرج الخياط</td>
<td>294-313</td>
</tr>
<tr>
<td></td>
<td>314-324</td>
<td></td>
</tr>
<tr>
<td>القسم الإنجليزي</td>
<td></td>
<td></td>
</tr>
<tr>
<td>بما هاتكو فتاح أغا</td>
<td>20-3</td>
<td></td>
</tr>
<tr>
<td>رامون بوكو كابيفيلا</td>
<td>325-340</td>
<td></td>
</tr>
<tr>
<td>ناري خليل كامل</td>
<td>341-350</td>
<td></td>
</tr>
</tbody>
</table>

- كانون الثاني - 2004
لا تعاد أصول البحوث المقدمة لمجلة إلى أصحابها سواء نشرت أم لم تنشر.

- يتصل الباحث تصحيح ما يرد في بحثه من أخطاء لغوية وطかなりة.
- يسلم الباحث نسخة ورقية من بحثه مع نسخة كترونية مطبوعة على قرص (CD)، مصحح بشكل نهائي بعد إبلاغه بقبول بحثه للنشر.

12- تعمل المجلة وفق التمويل الذاتي، لذلك يتصل الباحث اجور النشر والاستلام بالبالغة (11500) مائة وخمسة عشر ألف دينار عراقي فقط.

13- يزود كل بحث بمصل من بحثه، أما نسخة المجلة كاملة فتطلب من سكرتارية المجلة لقاء ثم تحدده هيئة التحرير.

تنويه:

تعبر جميع الأفكار والآراء الواردة في مدون البحوث المنشورة في مجلة عن آراء أصحابها بشكل مباشر وتوجهاتهم الفكرية ولا تعبر بالضرورة عن آراء هيئة التحرير، لذلك أقترح التنويه.
- توضيح الهواش ببداية البحث بعد الصور والأشكال التوضيحية، مرتبة تسلسل تصاعدي.
- يشير إلى اسم المصدر كاملاً في الهاشم مع وضع مختصر المصدر بين قوسين في نهاية الهاشم.
- ترميز الجداول والأشكال على التوالي وبحسب ورودها في البحث، وتزويد بعناوين وتقدم بأوراق منفصلة وتقدم المخططات بالحبر الأسود والصور تكون عالية الدقة.
- تتزوج المصادر العربية الواردة في البحث إلى اللغة الإنجليزية (Bibliography)، وتوضع بعد الهواش في نهاية البحث.
- تكون أعداد الصفحة من كل الاتجاهات من الأعلى والأسفل (254) سم، واليمين واليسار (2017) سم.

- يجب أن يحتوي البحث ملخصاً باللغتين العربية والإنجليزية على أن لا يقل عن (150) كلمة، ولا يزيد عن (250) كلمة.

- يجب أن يلتزم الباحث (كاتب المقالة) بتوفير المعلومات الآتية عن البحث، وهي:
 - يجب أن لا يضم البحث المرسل للتقييم إلى المجلة اسم الباحث، أي يرسل البحث بدون اسماء.
 - يرسل الباحث اسمه الكامل ولقبه العلمي وشهادته ومنطقه (القسم / الكلية / الجامعة).
 - وعنوان مختصر للبحث يضم أبرز ما في العنوان من مراكز علمية فضلاً عن بريده الإلكتروني والموقع الويب للبحث (ORCID).

- على الباحث مراعاة الشروط العلمية الآتية في كتابة بحثه، فهي الأساس في التقيم، والشروط هي:
 - يجب الباحث على تحديد أهمية بحثه وهدفه التي يسعى إلى تحقيقها، وإن بعد الغرض من تطبيقها.
 - يجب أن يراعي الباحث اختيار المنهج الصحيح الذي يتضمن مع موضوع بحثه، كما يجب أن يراعي أهداف جميع البيانات التي تتضمن مع المنهج المتبناه فيه.
 - يجب على الباحث أن يراعي اختيار مصادر المعلومات التي يعتمد عليها في البحث، وأختار ما يتناسب مع بحثه مراعياً الحداثة فيها، وندقة في تسجيل الاقتباسات والإشارة إلى البيانات اللازمة لهذه المصادر.

- يجب على الباحث أن يراعي تدوب النتائج التي توصل إليها، والتأكد من موضوعيتها ومدى ترابطها مع الأسئلة البحثية أو الفرضيات التي وضعها في منح بحثه.

- إن لا يكون البحث قد تم نشره سابقًا أو كان مقدماً لنيل درجة علمية أو مسلاً من منبهة فكرة لبحث آخر، وعلى الباحث التعهد بذلك خططاً عند تقديمه للنشر.

- لا تتزايد عدد صفحات البحث عن (20)، صفحات في حال تجاوز العدد المطلوب يتكفل الباحث بدفع مبلغ إضافي قدره (300) دينار عن كل صفحة إضافية.
قواعد النشر في مجلة آثار الرافدين

1- تقبل المجلة البحوث العلمية التي تقع في تخصصات:
 - علم الآثار بفرعيه القديم والإسلامي.
 - اللغات القديمة بلهجاتها والدراسات المقارنة.
 - الكتب الصنجورية والخطوط القديمة.
 - الدراسات التاريخية والحضارية.
 - الجيولوجيا الآثرية.
 - تقنيات البحث الآثرية.
 - الدراسات الأنتروپولوجية.
 - الصيانة والترميم.

2- تقبل المجلة البحوث باللغتين العربية أو الإنجليزية.

3- على الباحث الراغب بالنشر التسجيل في المجلة على الرابط الآتي:

https://athar.mosuljournals.com

4- بعد التسجيل سترسل المنصة إلى بريد الباحث الذي سجل فيه رسالة مفادها أنه سجل فيها، وسيجد كلمة المرور الخاصة به ليستعملها في الولوج في موقع المجلة بكتابة البريد الإلكتروني الذي استعمله مع كلمة المرور التي وصلت إليه على الرابط الآتي:

uom.atharalrafedain@gmail.com

5- ستمنح المنصة (الموقع) صفة الباحث لن من قام بالتسجيل، ليستطيع بهذه الصفة إدخال بحثه بمجموعة من الخطوات تبدأ بملء بيانات ذات العلاقة ببحثه ويمكنه الإطلاع عليها عند تحميل بحثه.

6- تكون صيغة البحث وفق تعليمات الطباعة للنشر في المجلة، وعلى النحو الآتي:
 - يطبع البحث على ورق (A4)، وينظام Microsoft Word، وبخط Times New Roman، ويدخل اللغة العربية، ويدخل اللغة الإنجليزية.
 - يطبع عنوان البحث، وسط الصفحة، بحجم (16)، يليه اسم الباحث ودرجته العلمية ومسئله كامل والبريد الإلكتروني (e-mail)، بحجم (15)، وباللغتين العربية والإنجليزية.
 - يطبع متن البحث بحجم (14)، أما الهواشم فتكون بحجم (12).
 - توضيح الإشكال والصور في نهاية البحث.
مقوم اللغة العربية
أ.د. معين يحيى محمد
قسم اللغة العربية / كلية الآداب / جامعة الموصل

مقوم اللغة الانكليزية
م.م. مشتاق عبد الله جميل
كلية الآثار / جامعة الموصل

تنضيد وتنسيق
م. ثائر سلطان درويش

تصميم الغلاف
د. عامر الجميلي
هيأة التحرير
أ. خالد سالم اسماعيل
رئيس التحرير
جامعة الموصل-كلية الآثار/ العراق
أ.م. د. حسين خيبر عبد الواحد
مدير التحرير
جامعة الموصل-كلية الآثار/ العراق

أعضاء هيئة التحرير

أ.د. البرايت ستون
جامعة ستوني بروك/ نيويورك/ أمريكا
أ.د. ادل هابي أوتو
جامعة ميونخ/ معهد الآثار/ الألمانيا
أ.د. والتر سلايبركر
جامعة ميونخ/ معهد الآشوريات/ المانيا
أ.د. بيكو ماركيني
جامعة بولونيا/ قسم التاريخ/ إيطاليا
أ.د. هديب جهادي عبد الكرم
جامعة بغداد/ قسم الآثار/ العراق
أ.د. جواد مهر الموسي
جامعة بغداد/ قسم الآثار/ العراق
أ.د. رفاه جاسم همادي
جامعة البصرة/ قسم التاريخ/ العراق
أ.د. عادل هاشم علي
جامعة الموصل/ قسم الآثار/ العراق
أ.م. د. ياسمين عبد الكريم محمد علي
جامعة الموصل/ قسم الآثار/ العراق
أ.م. د. فيان موفق رشيد
جامعة الموصل/ قسم الحضارة/ العراق
أ.م. د. هاني عبد الخفي عبد الله
بِسْمِ اللَّهِ الرَّحْمَٰنِ الرَّحِيمِ
مجلة

AJAMAT AL-RAFIDAIN

مجلة علمية محكمة تبحث في آثار العراق و الشرق الأدنى القديم

تصدر عن كلية الآثار في جامعة الموصل

E-Mail: uom.atharalrafedain@gmail.com

البريد الإلكتروني

الجزء الأول/ المجلد التاسع

العدد الآخرة 1445 ه / كانون الثاني 2024 م

رقم الإبداع في دار الكتب والوثائق بغداد

(1712) لسنة 2012